Evaluating Heuristics for Scheduling Dependent Jobs in Grid Computing Environments
نویسندگان
چکیده
Job scheduling plays a critical role in the utilisation of grid resources by mapping a number of jobs to grid resources. However, the heterogeneity of grid resources adds some challenges to the work of job scheduling, especially when jobs have dependencies which can be represented as Direct Acyclic Graphs (DAGs). It is widely recognised that scheduling m jobs to n resources with an objective to achieve a minimum makespan has shown to be NP-complete, requiring the development of heuristics. Although a number of heuristics are available for job scheduling optimisation, selecting the best heuristic to use in a given grid environment remains a difficult problem due to the fact that the performance of each original heuristic is usually evaluated under different assumptions. This paper evaluates 12 representative heuristics for dependent job scheduling under one set of common assumptions. The results are presented and analysed, which provides an even basis in comparison of the performance of those heuristics. To facilitate performance evaluation, a DAG simulator is implemented which provides a set of tools for DAG job configuration, execution, and monitoring. The components of the DAG simulator are also presented in this paper.
منابع مشابه
Green Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملA fast, effective local search for scheduling independent jobs in heterogeneous computing environments
The efficient scheduling of independent computational jobs in a heterogeneous computing (HC) environment is an important problem in domains such as grid computing. Finding optimal schedules for such an environment is (in general) an NP-hard problem, and so heuristic approaches must be used. Work with other NP-hard problems has shown that solutions found by heuristic algorithms can often be impr...
متن کاملScheduling Jobs on Grid Computing Using Firefly Algorithm
Scheduling jobs on computational grids is identified as NP-complete problem due to the heterogeneity of resources; the resources belong to different administrative domains and apply different management policies. This paper presents a novel metaheuristics method based on Firefly Algorithm (FA) for scheduling jobs on grid computing. The proposed method is to dynamically create an optimal schedul...
متن کاملSolving the Problem of Scheduling Unrelated Parallel Machines with Limited Access to Jobs
Nowadays, by successful application of on time production concept in other concepts like production management and storage, the need to complete the processing of jobs in their delivery time is considered a key issue in industrial environments. Unrelated parallel machines scheduling is a general mood of classic problems of parallel machines. In some of the applications of unrelated parallel mac...
متن کاملSolving the Problem of Scheduling Unrelated Parallel Machines with Limited Access to Jobs
Nowadays, by successful application of on time production concept in other concepts like production management and storage, the need to complete the processing of jobs in their delivery time is considered a key issue in industrial environments. Unrelated parallel machines scheduling is a general mood of classic problems of parallel machines. In some of the applications of unrelated parallel mac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJGHPC
دوره 2 شماره
صفحات -
تاریخ انتشار 2010